
University of Houston - Clear Lake [Spring 2023]

CSCI 4336 - Introduction to Machine Learning

Logistic Regression using Java and Kaggle Titanic Dataset

Student Name: Brandon E Ramirez

Date: 4/17/2023

Assignment: Term Project

Due: 4/24/2023 @ 11:59PM

Student ID: 1952649

1

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

Contents

1 Introduction 2

2 Project Scope/Requirements 2

3 Email recap 4

4 Analyzing the data 4

5 Cleaning the Data 9
5.1 Missing Values . 9
5.2 Interpreting the Features . 9
5.3 Useful features . 9

6 How Binomial Logistic (logit) Regression Works 9

7 Source Code & Technical Challenges 13
7.1 My code . 13
7.2 Explanation . 13
7.3 Processing the Data . 13
7.4 Tech Stack Used . 14
7.5 Visualizing the data (optional) . 14
7.6 Results . 14

8 Running My Logistic Regression Algorithm (Instructions) 14

9 SciKitLearn Textbook Implementation 14
9.1 SciKit Source Code . 14
9.2 Results & Comparison . 15

10 Conclusion 15

11 Appendices 16

12 Sources 16

List of Figures

1 High Level Logistic Regression Schematic . 10
2 Sigmoid function . 11
3 The sigmoid function can give us a continous value (probability) as well as a discrete value. . . . 11
4 Cost function behavior when y = 1, & y = 0 . 12
5 The rate of error is minimized as the slope approaches 0 . 13
6 Optimization of logistic curve . 13

1 Introduction

The aim of this project is to implemnt the logistic regression machine learning algorithm using the Kaggle ”Ti-
tanic - Machine Learning from Disaster” dataset. The model should be able to identify who survived the disas-
ter by categorizing their likelyhood of survival as a 0 or 1. This will be based on the cummulative probability
determined by the provided features. Surpassing a threshold value of 0.5 or 50% will output a logical 1 (sur-
vived), 0 (died) otherwise.

2 Project Scope/Requirements

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 2

CSCI 4336– Introduction to Machine Learning
Term Project.
Due: Monday April 24, 2023 by 11:59pm

Requirements:

1. Pick your favorite data set (Kaggle, UCI, etc.) and figure out how you want to analyze it.
You may choose either linear regression, gradient descent, or a logistic regression
gradient descent algorithm to be used with the data set. Once you decide what you
want to do, you need to email the instructor and the TA by April 5th your plan of action
on what you are going to implement and what type of information are you going to
extract and conclude out of the data.

This step is your first deliverable in writing via email to the instructor and the TA.

2. You must implement the code for this project using a high-level programming language:
Java, C, C++. That means the machine learning algorithms must be implemented from
scratch using your choice of language. Keep in mind that your results must be clear and
concise to be able to graph them using your favorite graphing tool(using matplotlib).
Plotting the data created from the logistic regression algorithm is not required. Your
code must also be interactive as much as possible to be able to allow the user to
interact with it (it should be able to be run on any machine with ease).

3. You must be creative. Creativity and usefulness of your project will be part of the grade.
This means also that you should find data that can and needs to be cleaned.

4. Visualization and analysis of the data is important, you may use Jupyter Notebooks to do
so to help you visualize the data. You also need to compare your results to those of
Scikit-Learn(run logistic regression using sklearn tools from book).

5. You need to provide the code, and a completely and cleanly written report to the
instructor by the due date as well as schedule an appointment to demo your code and
your project to both the instructor and the TA. This is also part of the grade(optional,
may not be necessary if the documentation is detailed enough).

6. When in doubt ask the instructor about any details or if you have any questions.

Best of Luck

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

3 Email recap

---|proposal.txt|---

Send to:

Instructor: Dr. Ahmed Abukmail; Email: Abukmail@uhcl.edu

(TA): Vinay Kopuri; Email: KopuriV6277@uhcl.edu

1. Pick your favorite data set (Kaggle, UCI, etc.) and figure out how you want to analyze it. You

may choose either linear regression, gradient descent, or a logistic regression gradient descent

algorithm to be used with the data set. Once you decide what you want to do, you need to email the

instructor and the TA by April 5th your plan of action on what you are going to implement and what

type of information are you going to extract and conclude out of the data.

This step is your first deliverable in writing via email to the instructor and the TA.

-The data: Kaggle Titanic Survivor Dataset ("https://www.kaggle.com/competitions/titanic/data")

-Intended Algorithm: Logistic Regression / Sigmoid Function

-Technologies: Java(implementing model algorithm), Mathplotlib/awt+swing(visualization),

Jupyter/Excel(analyzing & cleaning data).

The available data is composed of 2 data sets, a training and test set which are both csv files.

And a file indicating their passenger ID and whether they survived or not(1 or 0). All the available

features are:

Variable: Definition: Key:

survival Survival 0 = No, 1 = Yes

pclass Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex Sex

Age Age in years

sibsp # of siblings / spouses aboard the Titanic

parch # of parents / children aboard the Titanic

ticket Ticket number

fare Passenger fare

cabin Cabin number

embarked Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Note*: "embarked" will need a numeric value for it to be useful. I will figure out how to determine

these values later.

I will try to find the probability that a passenger from the Titanic disaster survived given relevant

characteristics. I intend (most likely) to use: age, pclass, sex, embarked, parch, & sibsp. I want to

use these features but they may vary as I may include more or less features as my model evolves in

requirements and scope. The model should provide a probability of someone surviving (1 or 0 and ##%)

given these parameters.

Sources: https://onix-systems.com/blog/top-10-java-machine-learning-tools-and-libraries

4 Analyzing the data

First of all, the training data was imported using Anaconda which was used to import dependencies and ini-
tialize Jupyter Notebook by using the cmd.exe prompt (”Jupyter Notebook”). The data was analyzed using a
dataframe and was visualized using mathplotlib at this stage. I will use other tools to graph the Sigmoid func-
tion and the data’s outputs later on. Here is my analysis of the data before cleaning it:

Note* Further analytics about the data can be found at the source. Other files/data we will use are ”gen-
der submission.csv” which has a list of passenger ids and their actual survival outcome; and test.csv which we
will use to verify the model later.

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 4

In [4]:
import sys
assert sys.version_info >= (3, 7)
from packaging import version
import sklearn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [5]:
def load_training_data():
 # reading csv files
 return pd.read_csv('train.csv', sep=",") #the mighty dataframe

passengers = load_training_data()
passengers.head()

In [6]:
passengers.info() #get the info of the resulting data frame

In [8]:
passengers["Survived"].value_counts()

In [9]:
passengers["Pclass"].value_counts()

In [10]:
passengers["Sex"].value_counts()

In [11]:
passengers["Embarked"].value_counts()

In [12]:
passengers["Fare"].value_counts()

In [13]:
passengers["SibSp"].value_counts()

In [14]:
passengers["Parch"].value_counts()

Out[5]:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S

1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C

2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S

3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S

4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 PassengerId 891 non-null int64
 1 Survived 891 non-null int64
 2 Pclass 891 non-null int64
 3 Name 891 non-null object
 4 Sex 891 non-null object
 5 Age 714 non-null float64
 6 SibSp 891 non-null int64
 7 Parch 891 non-null int64
 8 Ticket 891 non-null object
 9 Fare 891 non-null float64
 10 Cabin 204 non-null object
 11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

Out[8]:
0 549
1 342
Name: Survived, dtype: int64

Out[9]:
3 491
1 216
2 184
Name: Pclass, dtype: int64

Out[10]:
male 577
female 314
Name: Sex, dtype: int64

Out[11]:
S 644
C 168
Q 77
Name: Embarked, dtype: int64

Out[12]:
8.0500 43
13.0000 42
7.8958 38
7.7500 34
26.0000 31
 ..
35.0000 1
28.5000 1
6.2375 1
14.0000 1
10.5167 1
Name: Fare, Length: 248, dtype: int64

Out[13]:
0 608
1 209
2 28
4 18
3 16
8 7
5 5
Name: SibSp, dtype: int64

Out[14]:

In [15]:
passengers["Age"].value_counts()

In [16]:
passengers["PassengerId"].value_counts()

In [18]:
passengers["Cabin"].value_counts()

In [20]:
passengers.describe()

Out[14]:
0 678
1 118
2 80
5 5
3 5
4 4
6 1
Name: Parch, dtype: int64

Out[15]:
24.00 30
22.00 27
18.00 26
19.00 25
28.00 25
 ..
36.50 1
55.50 1
0.92 1
23.50 1
74.00 1
Name: Age, Length: 88, dtype: int64

Out[16]:
1 1
599 1
588 1
589 1
590 1
 ..
301 1
302 1
303 1
304 1
891 1
Name: PassengerId, Length: 891, dtype: int64

Out[18]:
B96 B98 4
G6 4
C23 C25 C27 4
C22 C26 3
F33 3
 ..
E34 1
C7 1
C54 1
E36 1
C148 1
Name: Cabin, Length: 147, dtype: int64

Out[20]:

PassengerId Survived Pclass Age SibSp Parch Fare

count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000

mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208

std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429

min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000

25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400

50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200

75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000

max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

In [17]:
import matplotlib.pyplot as plt

#naturally, only the numerical data can be plotted
extra code – the next 5 lines define the default font sizes
plt.style.use('Solarize_Light2')
plt.rc('font', size=20)
plt.rc('axes', labelsize=30, titlesize=20)
plt.rc('legend', fontsize=30)
plt.rc('xtick', labelsize=25)
plt.rc('ytick', labelsize=25)
plt.plot(a, b, color="red")
passengers.hist(bins=50, figsize=(24, 16)) # one type of visualization chart
plt.show()

In [9]:
import sys
assert sys.version_info >= (3, 7)
from packaging import version
import sklearn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

#naturally, only the numerical data can be plotted
extra code – the next 5 lines define the default font sizes
plt.style.use('bmh')
plt.rc('font', size=20)
plt.rc('axes', labelsize=15, titlesize=20)
plt.rc('legend', fontsize=30)
plt.rc('xtick', labelsize=25)
plt.rc('ytick', labelsize=25)

def load_training_data():
 # reading csv files
 return pd.read_csv('train.csv', sep=",") #the mighty dataframe

passengers = load_training_data()

fig, axs = plt.subplots(2, 3, figsize=(18, 8))

axs[0, 0].scatter(passengers['Age'], passengers['Fare'])
axs[0, 1].scatter(passengers['Age'], passengers['Survived'])
axs[0, 2].scatter(passengers['Age'], passengers['Survived'])
axs[1, 0].scatter(passengers['Fare'], passengers['Survived'])
axs[1, 1].scatter(passengers['SibSp'], passengers['Survived'])
axs[1, 2].scatter(passengers['Parch'], passengers['Survived'])

axs[0, 0].set_xlabel('Age')
axs[0, 0].set_ylabel('Fare')
axs[0, 1].set_xlabel('Age')
axs[0, 1].set_ylabel('Survived')
axs[0, 2].set_xlabel('Age')
axs[0, 2].set_ylabel('Survived')
axs[1, 0].set_xlabel('Fare')
axs[1, 0].set_ylabel('Survived')
axs[1, 1].set_xlabel('SibSp')
axs[1, 1].set_ylabel('Survived')
axs[1, 2].set_xlabel('Parch')
axs[1, 2].set_ylabel('Survived')

fig.subplots_adjust(hspace=0.5)
plt.show()

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

5 Cleaning the Data

A machine learning model needs a good dataset in order to provide useful information. There are many ways
to ”prepare” or ”clean” data, there may be fields that are incorrect, incomplete, irrelevant, duplicated, or im-
properly formatted.

5.1 Missing Values

While analyzing the excel data I noticed that there are missing values. A good approach to fix this is comb-
ing through each column and find which ones contain any missing values: PassengerId{null},Survived{null},
Pclass{null}, Name{null}, Sex{null}, SibSp{null}, Parch{null}, Ticket{null}, Fare{null}(some of the fares were
0 or free).

Age{177 rows}, Cabin{206 rows}, Embarked{2 rows}.

Some features don’t matter or have data that a little to complex to interpret like cabin and ticket type, but
the others must be free of error and have values to work with later on. The age column has the most missing
values so I will concentrate on it. I can fill in these values by deleting the columns, inputting the mean as a
placeholder value, or make an educated guess as to what the passengers likely paid. I will do a combination
of these three. For a third of the passengers I will assign them an age based on the price of their ticket in the
following way:

Avg Ticket cost Range Projected Age

≤ $35(£7) 0-20 10

$35 ≤ $65(£12) 20-45 30

$65 ≤ $400(£30) 45+ 55

I will assign 50 missing ages using this method, assign 50 the mean age (29.699118 ≈ 30), and remove the re-
maining rows with missing values. These will be colored differently in the excel training data file. We now have
814 rows to train the model with. Source: https://rmstitanic1912.weebly.com/the-cost-of-tickets.html

5.2 Interpreting the Features

The ”embarked” feature has 3 letters denoting the ports of embarkation, C = Cherbourg, Q = Queenstown, S
= Southampton. The embarked column only has 2 missing values so I will just make an educated guess with
those based on ticket price and port. Finally, I will be marking them as 0,1, or 2 based on the relative GDP
of each town in 1912 (C=0,S=1,Q=2) where ”3” was the wealthiest port at the time. This feature may not be
useful enough as the port cities might not hold sufficient applicable information to get any practical results.
The sex of each passenger can be interpreted as 0 for male and 1 for female.

5.3 Useful features

We need to make an assessment of which features are quantifiable and relevant to our model. We have a decent
collection of features to work with but we need to choose the features that will grant us useful results. The
columns that are seemingly unnecessary are cabin, name, and ticket number; these features should have no ef-
fect on our results. There is also the matter of extrapolating useful information from the remaining columns.
PassengerId will be used to identify a passenger (1 to 814), and ”survived” are essential to managing and test-
ing the model. We need to scrutinize the features and possibly omit/include them to revise the model as we
see fit. The features we will definitely use are: sex, age, fare, Pclass, SibSp, Parch, & embarked.

6 How Binomial Logistic (logit) Regression Works

Logistic regression uses the sigmoid function which is a mathematical function used to assign predicted values
to probabilities by mapping any real value into another value within a range of 0 to 1. It is defined by a char-
acteristic S-shaped curve or sigmoid curve which is produced as y values asymptotically approach 0 and 1 as
the x values approach −∞ and ∞ respectively. The input weights/parameters must be trained to this curve
best-fits our dataset. Once the curve reasonably approximates our dataset we can start making useful predic-
tions. Some assumptions about the data are:

1. The dependent variable must be categorical in nature

2. Only relevant variables should be included

3. Large sample size is required

4. The independent variable should not have multi-collinearity

5. Given output ŷ, if ŷ ≥ 0.5 then output = O(1), else ŷ < 0.5 = O(0)

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 9

https://rmstitanic1912.weebly.com/the-cost-of-tickets.html

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

Figure 1: High Level Logistic Regression Schematic

The above process can be described mathematically as:
”y = w1 · x1 + w2 · x2 + w3 · x3 + . . .+ wn−1 · xn−1 + wn · xn + b” or y = wTx+ b”. If ŷ ≥ 0.5 = O(1), else

ŷ < 0.5 = O(0)

This is another way of writing it:

[
x1, x2, x3, . . . , xn−1, xn

]
1×n

·


w1,
w2,
w3,
. . . ,
wn−1,
wn


n×1

+ b → N → A → U → O(0, 1)

Where b = bias term, N = Net Input Function, A = Activation Function, U = Unit Step Function, O =
Output.

The x row vector are the input features, the w column vector are the weights which are initialized to 0 when
we begin training the model.

The logistic regression algorithm needs several components, these include:

1. Sigmoid function (activation function)

σ(x) =
1

1 + e−x
=

ex

ex + 1

where σ(x) = S(x) = sigmoid function, e = Euler’s Number (≈ 2.71828)
Domain: (−∞,∞), Range: (0, +1), & S(0) = 0.5

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 10

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

Figure 2: Sigmoid function

Figure 3: The sigmoid function can give us a continous value (probability) as well as a discrete value.

2. Cost function
The cost function is a representation of the error in our predictions, we need to decrease its value in or-
der to get accurate results.

ŷ = σ(wTx+ b) =
1

1 + e−wT x+b

cost =
−1

m
·

m∑
i=o

[y · log(ŷ) + (1− y)log(1− ŷ)]

Where m = number of values in the data-set, ŷ is our predicted value, and y is the actual value. We use
this function because it only allows for 0 or 1 (or any range in between) to be accepted values. Lets see
what happens when y equals 0 and 1 for a single observation:

if y =

1, error = −log(ŷ); because:− [y · log(ŷ) +
��������: 0

(1− y)log(1− ŷ)]

0, else, error = −log(1− ŷ); because:− [�����: 0

(y · log(ŷ)) + (1− y) · log(1− ŷ)]

(1)

If the true value y = 1, and our predicted value ŷ is close or equal to 1, then the error rate will be lower
because −log(1) = 0. Otherwise, if the true value y = 0, and our predicted value ŷ is close or equal to 0,
then the error rate will be lower because −log(1) = 0.

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 11

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

Figure 4: Cost function behavior when y = 1, & y = 0

3. Gradient descent
Gradient descent is an iterative optimization algorithm which will help us reduce the cost function value
by modifying the weight(s) in our model so that we can approach a global minima. This part of the al-
gorithm will be repeated using a for loop. This algorithms components are:

Ŵ = W − α · ∂cost

∂W

b̂ = b− α · ∂cost

∂b

The first order derivatives can also be written as:

∂cost

∂W
= (ŷ − y) · x

∂cost

∂b
= (ŷ − y)

∴ Ŵ = W − α · (ŷ − y) · x
b̂ = b− α · (ŷ − y)

s.t. α = learning rate, Ŵ = the new weight, b̂ = is the updated y intercept. The bold ŷ, y, x represent
the matrix form of all utilized observations in data-set.

The type of gradient descent I will use is batch gradient descent, which calculates the error for each ex-
ample within the training data-set. The model is not revised until every training sample has been as-
sessed. Every cycle is referred to as a cycle or a training epoch. The learning rate hyper-parameter must
be chosen to avoid surpassing the global minima along the x-axis but not be too small so that it doesn’t
take too many iterations to find it.

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 12

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

Figure 5: The rate of error is minimized as the slope approaches 0

Figure 6: Optimization of logistic curve

7 Source Code & Technical Challenges

7.1 My code

The code for this project is in the folder X, just open the file from any IDE including the data-sets files to run
the program.

7.2 Explanation

The program should be able to generate a list of outputs including the cost function value after a certain num-
ber of epochs as well as the rate of success once the model has been fully trained.

7.3 Processing the Data

The data needs to be stored in a way such that all the relevant data can be called when needed and to run
analysis on it (margin of error, etc.). The data must be able to read the train-X(gives us id and other features)
and train-Y data (tells us who survived as well as id). The way in which the algorithm is implemented should
be easy to replicate using Python and Jupyter Notebooks like in the SciKit Learn book. I deleted the header
rows for each file to get them out of the way of calculations. I then took the transpose of the input matrix so
that each feature could be read as an individual line into Java. I had difficulty importing the csv data so I con-
verted them to txt files and used the following code to read from the files at specific lines so I could give them
the appropriate feature names and save them in their easy to access array format.

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 13

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

1 import java.nio.file.Files;

2 import java.nio.file.Paths;

3 // ...

4 String test_X_embarked = Files.readAllLines(Paths.get(test_X)).get (7);

Listing 1: Importing the rows from external files

I then had to parse these string arrays to either integer or float arrays. After I had done this for all the files I
could finally start training the model

7.4 Tech Stack Used

The project needed the use Java, my IDE of choice was IntelliJ IDEA. I planned using the Java 2D Graphics
API provided by Oracle. I realized awt + swing is used for creating GUI components rather than for plotting
and visualizing data.

7.5 Visualizing the data (optional)

The probability(x) should be mapped to a function σ(x) which will yield a y-axis value, this can be used to
visualize the coordinate points. Ideally, by pressing the coordinate point it should display the calculated prob-
ability and whether or not they survived as well as age, sex, name, & whether or not they actually survived. I
decided to do this later on and not visualize the data this time. I plan to do it later.

7.6 Results

Our rate of success was should be in the program output. I’m sure we could improve our results by including
observations from the other data-sets, using other techniques (stochastic gradient descent, etc.) or experiment-
ing with the ”iterations” and ”learning rate” parameters further. Feel free to experiment with the parameters
and try to find the sweet spot yourself.

8 Running My Logistic Regression Algorithm (Instructions)

Just make sure to read the ”README”.txt file that came int the Java source folder. It should be simple since
running the program doesn’t require setting up any external dependencies. There shouldn’t be any setting up
on your part to make it work, everything is set to just run.

9 SciKitLearn Textbook Implementation

The book ”Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” talks about logistic regres-
sion on page 268 using the famous Iris data-set. It primarily uses the sklearn ”LogisticRegression” and ”train-
test-split” python classes from the model selection and linear modules to train and process the model.

9.1 SciKit Source Code

1 #!/usr/bin/env python

2 # coding: utf -8

3 # In[1]:

4 import numpy as np

5 import pandas as pd

6 from sklearn.model_selection import train_test_split

7 from sklearn.linear_model import LogisticRegression

8 from sklearn.metrics import accuracy_score

9 titanic_data = pd.read_csv('train.csv')
10 # In[2]:

11 # check the number of missing values in each column

12 titanic_data.isnull ().sum()

13 # In[3]:

14 # drop the "Cabin" column from the dataframe

15 titanic_data = titanic_data.drop(columns='Cabin ', axis =1)

16 # In[4]:

17 # replacing the missing values in "Age" column with mean value

18 titanic_data['Age']. fillna(titanic_data['Age'].mean(), inplace=True)

19 # In[5]:

20 # replacing the missing values in "Embarked" column with mode value

21 titanic_data['Embarked ']. fillna(titanic_data['Embarked '].mode()[0], inplace=True)

22 # In[6]:

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 14

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

23 # converting categorical Columns

24 titanic_data.replace ({'Sex':{'male':0,'female ':1}, 'Embarked ':{'S':0,'C':1,'Q':2}},
inplace=True)

25 # In[7]:

26 X = titanic_data.drop(columns = ['PassengerId ','Name','Ticket ','Survived '],axis =1)
27 Y = titanic_data['Survived ']
28 print(X)

29 # In[8]:

30 print(Y)

31 # In[9]:

32 X_train , X_test , Y_train , Y_test = train_test_split(X,Y, test_size =0.2, random_state =2)

33 # In [10]:

34 print(X.shape , X_train.shape , X_test.shape)

35 # In [11]:

36 #Training the model using Logistic Regression

37 model = LogisticRegression ()

38 # training the Logistic Regression model with training data

39 model.fit(X_train , Y_train)

40 # In [12]:

41 # accuracy on training data

42 X_train_prediction = model.predict(X_train)

43 print(X_train_prediction)

44 # In [13]:

45 training_data_accuracy = accuracy_score(Y_train , X_train_prediction)

46 print('Accuracy score of training data : ', training_data_accuracy)

Listing 2: Code used in book using Titanic dataset

9.2 Results & Comparison

10 Conclusion

Logistic regression is a statistical technique used to model the probability of a binary response variable based
on one or more predictor variables. It is a type of regression analysis that uses a logistic function to transform
the output of a linear regression model into a probability value between 0 and 1. The model estimates the co-
efficients of the predictor variables, which are used to calculate the odds of the response variable being in one
category over the other. Logistic regression is widely used in various fields, including medicine, economics, and
social sciences, to predict the probability of outcomes such as disease diagnosis or customer behavior.

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 15

CSCI 4336 – 01: Dr. Ahmed Abukmail Brandon E Ramirez

11 Appendices

N/A

12 Sources

Data

1. https://www.kaggle.com/competitions/titanic/data

Math and Algorithm Reference

1. https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

2. https://www.javatpoint.com/logistic-regression-in-machine-learning

General LaTeX reference:

1. https://www.math.uci.edu/∼xiangwen/pdf/LaTeX-Math-Symbols.pdf

2. https://www.overleaf.com/learn/latex/Learn LaTeX in 30 minutes

3. https://www.youtube.com/watch?v=ydOTMQC7np0

Excel Reference:

1. https://www.youtube.com/watch?v=YiC-z FH7SU

2. https://www.youtube.com/watch?v=fSLBEPJglaU

Code formatting and colors reference: https://www.overleaf.com/learn/latex/Code listing
Colors reference: https://www.overleaf.com/learn/latex/Using colours in LaTeX
Java 2D Graphics API Documentation: https://docs.oracle.com/javase/tutorial/2d/index.html
Other Documentation:

1. https://nbconvert.readthedocs.io/en/latest/install.html

2. https://www.dunderdata.com/blog/view-all-available-matplotlib-styles

3. https://texdoc.org/serve/pdfpages/0

4. https://www.overleaf.com/learn/latex/Matrices

SciKit Learn:

1. https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html#sklearn.
linear model.LogisticRegression

Miscellaneous Sources:

1. https://stackoverflow.com/questions/2739159/inserting-a-pdf-file-in-latex

2. https://tex.stackexchange.com/questions/85200/include-data-from-a-txt-verbatim

3. https://www.overleaf.com/learn/latex/Headers and footers

4. https://stackoverflow.com/questions/4027363/two-statements-next-to-curly-brace-in-an-equation

5. https://jansoehlke.com/2010/06/strikethrough-in-latex/

Tools:

1. (ChatGPT,personalcommunication,April22,2023)

2. https://www.tablesgenerator.com/

3. https://htmtopdf.herokuapp.com/ipynbviewer/

4. https://phrasefix.com/tools/remove-tabs-from-text/

Other:

1. https://en.wikivoyage.org/wiki/RMS Titanic

Logistic Regression using Java and Kaggle Titanic Dataset Page No. 16

https://www.kaggle.com/competitions/titanic/data
https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.math.uci.edu/~xiangwen/pdf/LaTeX-Math-Symbols.pdf
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.youtube.com/watch?v=ydOTMQC7np0
https://www.youtube.com/watch?v=YiC-z_FH7SU
https://www.youtube.com/watch?v=fSLBEPJglaU
https://www.overleaf.com/learn/latex/Code_listing
https://www.overleaf.com/learn/latex/Using_colours_in_LaTeX
https://docs.oracle.com/javase/tutorial/2d/index.html
https://nbconvert.readthedocs.io/en/latest/install.html
https://www.dunderdata.com/blog/view-all-available-matplotlib-styles
https://texdoc.org/serve/pdfpages/0
https://www.overleaf.com/learn/latex/Matrices
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://stackoverflow.com/questions/2739159/inserting-a-pdf-file-in-latex
https://tex.stackexchange.com/questions/85200/include-data-from-a-txt-verbatim
https://www.overleaf.com/learn/latex/Headers_and_footers
https://stackoverflow.com/questions/4027363/two-statements-next-to-curly-brace-in-an-equation
https://jansoehlke.com/2010/06/strikethrough-in-latex/
(ChatGPT, personal communication, April 22, 2023)
https://www.tablesgenerator.com/
https://htmtopdf.herokuapp.com/ipynbviewer/
https://phrasefix.com/tools/remove-tabs-from-text/
https://en.wikivoyage.org/wiki/RMS_Titanic

	Introduction
	Project Scope/Requirements
	Email recap
	Analyzing the data
	Cleaning the Data
	Missing Values
	Interpreting the Features
	Useful features

	How Binomial Logistic (logit) Regression Works
	Source Code & Technical Challenges
	My code
	Explanation
	Processing the Data
	Tech Stack Used
	Visualizing the data (optional)
	Results

	Running My Logistic Regression Algorithm (Instructions)
	SciKitLearn Textbook Implementation
	SciKit Source Code
	Results & Comparison

	Conclusion
	Appendices
	Sources

